

Matrices and Probability

Vectors and Matrices Zero vectors: $\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$ 0 , \mathbf{O}

Vectors and Matrices

Vectors and Matrices

The transpose of a matrix
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

is

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

If v is a row vector, then v^T is a column vector and vice versa. Example: If $v = \begin{pmatrix} 4 & -1 & 2 \end{pmatrix}$ then $v^{T} = \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix}$

If A is an $m \times n$ matrix, then A is an $n \times m$ matrix. Example: If $A = \begin{pmatrix} 2 & -3 \\ -1 & 0 \\ 4 & 1 \end{pmatrix}$ then $A^{T} = \begin{pmatrix} 2 & -1 & 4 \\ -3 & 0 & 1 \end{pmatrix}$

Matrix addition

Sum of two matrices is defined by

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{pmatrix}$$

In other words,

$$[a_{ij}] + [b_{ij}] = [a_{ij} + b_{ij}]$$

Matrix addition

Scalar Multiplication

Scalar multiplication is defined by

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} ka_{11} & ka_{12} & \cdots & ka_{1n} \\ ka_{21} & ka_{22} & \cdots & ka_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ka_{m1} & ka_{m2} & \cdots & ka_{mn} \end{pmatrix}$$

In other words,

$$k[a_{ij}] = [ka_{ij}]$$

Scalar Multiplication

Inner product of vectors

Let $\mathbf{u} = (u_1, u_2, \dots, u_n)$ be a row vector and $\mathbf{v} = (v_1, v_2, \dots, v_n)^T$ be a column vector then we may define the product

$$(u_1 \quad u_2 \quad \cdots \quad u_n) \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

Note that the product **uv** is a real number (scalar).

Dim-sum Prices

Туре	Special	Large	Medium	Small
Prices	\$20	\$15	\$10	\$8
Price ve	ector:			
Price ve		15 1		

Dim-sum Prices

Туре	Special	Large	Medium	Small
Quantity	5	8	4	6
x and y				
	nption v	ector:		

Let $A=[a_{ik}]$ be an *m*-by-*p* matrix and $B=[b_{kj}]$ be a *p*-by-*n* matrix. The matrix product *AB* is defined as an *m*-by-*n* matrix such that the *ij*-th entry $[AB]_{ij}$ of *AB* is the product of the *i*-th row vector of *A* and the *j*-th column vector of *B*. In other words

$$[AB]_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{ip} b_{pj}$$

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ip} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mp} \end{pmatrix} \begin{pmatrix} b_{11} & \cdots & b_{1j} & \cdots & b_{1n} \\ b_{21} & \cdots & b_{2j} & \cdots & b_{2n} \\ b_{p1} & \cdots & b_{pj} & \cdots & b_{pn} \end{pmatrix}$$
$$= \begin{pmatrix} c_{11} & \cdots & c_{1j} & \cdots & c_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ c_{i1} & \cdots & c_{ij} & \cdots & c_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ c_{m1} & \cdots & c_{mj} & \cdots & c_{mn} \end{pmatrix}$$
$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{ip} b_{pj}$$

Example: $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix}$ $= \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} \end{pmatrix}$

Example:

$$\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{pmatrix}$$

$$=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} \\
a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32}
\end{pmatrix}$$

Example:

$$\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{pmatrix}$$

$$= \begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} \\
a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31}
& a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32}
\end{pmatrix}$$

Example: $\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 1.1 & 1.2 & 1.3 \\ 2.1 & 2.2 & 2.3 \end{pmatrix}$ $(1 \times 1.1 + 2 \times 2.1 \quad 1 \times 1.2 + 2 \times 2.2 \quad 1 \times 1.3 + 2 \times 2.3)$ $3 \times 1.1 + 4 \times 2.1$ $3 \times 1.2 + 4 \times 2.2$ $3 \times 1.3 + 4 \times 2.3$ $5 \times 1.1 + 6 \times 2.1$ $5 \times 1.2 + 6 \times 2.2$ $5 \times 1.3 + 6 \times 2.3$

Dim-sum Prices

Restaurant	Special \$20 \$18 \$23		Large \$15 \$14 \$13		Me	edium	Small \$8 \$10
Α						\$10	
В						\$12	
С						\$11	\$7
Price ma	trix:	(2	20	15	10	8)	
		1	8	14	12	10	
			23	13	11	7)	

Dim-sum Prices 8 4 Restaurant Cost \$308 6 A \$310 B 308 C \$305 310 305

Incident Matrix

Probability

Definition: A (finite) sample space is the set of all possible outcomes of a random trial. Examples:

- **1.** Throwing a dice $S = \{1, 2, 3, 4, 5, 6\}$
- **2.** Tossing two coins $S = \{HH, HT, TH, TT\}$

3. Drawing a poker card $S = \{ \mathbf{\Phi} \mathbf{A}, \mathbf{\Psi} \mathbf{A}, \dots, \mathbf{\Phi} \mathbf{K} \}$

Probability

Definition: An event A is a collectionof outcomes. $(A \subset S)$ Examples: For throwing a dice,1. The outcome is six $A = \{6\}$

- 2. The outcome is even
- $A = \{2, 4, 6\}$
- **3.** The outcome > 4 $A = \{5, 6\}$

Probability

Definition: A probability function p is a function such that $1.0 \le p(E) \le 1$, for any event $E \subset S$. $2. p(E_1 \cup E_2) = p(E_1) + p(E_2)$, when E_1 and E_2 are mutually exclusive. 3. p(S) = 1

Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?

Marilyn vos Savant

Ask Marilyn

Parade Magazine

P	robabili	ty
Strategy	Win a Goat	Win a Car
Stick	2/3	1/3
Change	1/3	2/3

Monty Hall's Problem on Movies

http://www.youtube.com/watch?v=5e_NKJD7msg&feature=related http://www.youtube.com/watch?v=mhlc7peGlGg

Random Variable

Definition: If we assign a value *X* to each element in a sample space, then we say that *X* is a random variable. (In other words, *X* is a function defined on a sample space *S*.)

Random Variable

A random variable usually has a practical meaning.

Examples:

- 1. X = number shown on a dice.
- 2. X =sum of the numbers on two dice.
- 3. X = number of heads shown on three coins.

Random Variable

You may also assign the values in any way you want.

Examples: For drawing a poker card, define

 $X(\blackbox{A}) = 1, X(\blackbox{A}) = 3, X(\blackbox{A}) = 6, X(\blackbox{A}) = 3,$ $X(\blackbox{A}) = 4.7, X(\blackbox{P}2) = -1.9, \dots, X(\blackbox{K}) = 13.$

Expected Value

Expected Value

Expected Value
The expected payoff for
1. Big:
$$E(X) = 1 \times \frac{105}{216} + (-1) \times \frac{111}{216} = -\frac{6}{216}$$

2. Triple 6: $E(X) = 180 \times \frac{1}{216} + (-1) \times \frac{215}{216} = -\frac{35}{216}$
3. 15 points: $E(X) = 18 \times \frac{10}{216} + (-1) \times \frac{206}{216} = -\frac{26}{216}$
4. No. of 1: $E(X) = 3 \times \frac{1}{216} + 2 \times \frac{15}{216} + 1 \times \frac{75}{216} + (-1) \times \frac{125}{216} = -\frac{17}{216}$

Matrix representation of Games

A two-person game with finite number of strategies can be represented by a matrix. Usually, the rows correspond to strategies of Player I and we say that Player I is the row player. Similarly, Player II is called the column player.

Matrix representation of Games

Payoffs of the game

We may also use two matrices to represent the payoffs of the players.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Payoff matrix of Player I

$$B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{pmatrix}$$

Payoff matrix of Player II

Strategies of the Players

A mixed strategy of Player I is represented by a row vector

$$\mathbf{p} = \begin{pmatrix} p_1 & p_2 & \cdots & p_m \end{pmatrix}$$

It means that Player uses strategies $R_1, R_2, ..., R_m$, with the probabilities $p_1, p_2, ..., p_m$, respectively.

Note that we have:

$$0 \le p_k \le 1$$
 and $\sum_{k=1}^m p_k = 1$

Strategies of the Players

Similarly, a mixed strategy of Player II is represented by another row vector

$$\mathbf{q} = \begin{pmatrix} q_1 & q_2 & \cdots & q_n \end{pmatrix}$$

where

Product and difference game

Each of the two players of a game chooses one number from "2" or "-1" simultaneously. Then the payoffs of Player I and Player II are the product and difference of the two numbers respectively.

The payoffs of the two players are represented by the two matrices.

$$A = \begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix}$$

Payoff matrix of Player I

$$B = \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix}$$

Payoff matrix of Player II

Suppose Player I uses strategy (0.8,0.2) and Player II uses strategy (0.6,0.4). The payoff of Player I is

$$E(P_A) = \begin{pmatrix} 0.8 & 0.2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix}$$
$$= \begin{pmatrix} 0.8 & 0.2 \\ -0.8 \end{pmatrix} \\= 1.12$$

Suppose Player I uses strategy (0.8,0.2) and Player II uses strategy (0.6,0.4). The payoff of Player II is $E(P_B) = \begin{pmatrix} 0.8 & 0.2 \end{pmatrix} \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix}$

$$= (0.6 \quad 2.4) \begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix}$$
$$= 1.32$$

Suppose Player II uses (0.6,0.4), we may calculate

$$A\mathbf{q}^{T} = \begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix}$$
$$= \begin{pmatrix} 1.6 \\ -0.8 \end{pmatrix}$$

It shows that payoffs of Player I will be 1.6 and -0.8 if he plays "2" and "-1" respectively.

Suppose Player I uses (0.8,0.2), we may calculate

$$\mathbf{p}B = \begin{pmatrix} 0.8 & 0.2 \end{pmatrix} \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix} \\ = \begin{pmatrix} 0.6 & 2.4 \end{pmatrix}$$

It shows that payoffs of Player II will be 0.6 and 2.4 if he plays "2" and "-1" respectively.